Graph partitioning models for parallel computing
نویسندگان
چکیده
Calculations can naturally be described as graphs in which vertices represent computation and edges reeect data dependencies. By partitioning the vertices of a graph, the calculation can be divided among processors of a parallel computer. However, the standard methodology for graph partitioning minimizes the wrong metric and lacks expressibility. We survey several recently proposed alternatives and discuss their relative merits.
منابع مشابه
Graph partitioning models for parallel computing q
Calculations can naturally be described as graphs in which vertices represent computation and edges re ̄ect data dependencies. By partitioning the vertices of a graph, the calculation can be divided among processors of a parallel computer. However, the standard methodology for graph partitioning minimizes the wrong metric and lacks expressibility. We survey several recently proposed alternatives...
متن کاملParallel partitioning with Zoltan: Is hypergraph partitioning worth it?
Graph partitioning is an important and well studied problem in combinatorial scientific computing, and is commonly used to reduce communication in parallel computing. Different models (graph, hypergraph) and objectives (edge cut, boundary vertices) have been proposed. Hypergraph partitioning has become increasingly popular over the last decade. Its main strength is that it accurately captures c...
متن کاملAn Evaluation of the Zoltan Parallel Graph and Hypergraph Partitioners
Graph partitioning is an important and well studied problem in combinatorial scientific computing, and is commonly used to reduce communication in parallel computing. Different models (graph, hypergraph) and objectives (edge cut, boundary vertices) have been proposed. For large problems, the partitioning itself must be done in parallel. Several software packages, such as ParMetis, PT-Scotch and...
متن کاملHypergraph-Partitioning-Based Decomposition for Parallel Sparse-Matrix Vector Multiplication
ÐIn this work, we show that the standard graph-partitioning-based decomposition of sparse matrices does not reflect the actual communication volume requirement for parallel matrix-vector multiplication. We propose two computational hypergraph models which avoid this crucial deficiency of the graph model. The proposed models reduce the decomposition problem to the well-known hypergraph partition...
متن کاملGraph Partitioning Algorithms with Applications to Scientific Computing Graph Partitioning Algorithms
Identifying the parallelism in a problem by partitioning its data and tasks among the processors of a parallel computer is a fundamental issue in parallel computing. This problem can be modeled as a graph partitioning problem in which the vertices of a graph are divided into a speciied number of subsets such that few edges join two vertices in diierent subsets. Several new graph partitioning al...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Parallel Computing
دوره 26 شماره
صفحات -
تاریخ انتشار 2000